Магічна перестановка
У великому королівстві, що складається з $N$ добрих людей, живе великий чарівник. Він має неймовірну здатність створювати ідеальні перестановки для своїх підданих.
Щоб це зробити, він попросив свого мудрого помічника скласти список $M$ магічних предметів (кожен з яких унікальний і має номер від $1$ до $N$). Але існує загадкова умова: жодна послідовна група з цих предметів не повинна утворювати ідеальну перестановку від $1$ до $A_i$ для кожного $i$, де $1 \le i \le M$.
Тепер чарівник хоче знати, чи може його помічник створити таку ідеальну перестановку для його людей, і, якщо так, яка буде найменша із них.
Input Specification
В першому рядку дані 2 числа $N$ і $M$ $(1 \le M \le N \le 2 * 10^5)$ У наступному рядку дані $M$ різних чисел через пробіл $(1 \le a_i \le N)$.
Output Specification
Вивести в одному рядку найменшу перестановку яка задовільняє умову.
Sample Input 1
5 3
4 3 2
Sample Output 1
1 3 4 5 2
Comments